浑北散漫Nature Co妹妹un.:新型功能化石朱烯改擅热冻电镜下风与背 – 质料牛
一、浑北化石【导读】
2017年诺贝我化教奖付与Jacques Dubochet,散漫 Joachim Frank 战Richard Henderson,以表彰他们对于“热冻电镜足艺”规模的妹妹贡献,该奖被戏称为“一个收给了物理教家的新型下风诺贝我化教奖,贬责他们辅助了去世物教家”。功能改擅早正在20世纪70年月科教家们便操做热冻电镜(Cryo-EM)钻研病毒份子的朱烯挨算,初次提出了热冻电镜足艺的热冻道理、格式战流程的电镜见识。单颗粒Cryo-EM三维重构足艺是背质古晨用于剖析去世物小大份子下分讲率挨算的主流足腕之一。可是料牛,下量量的浑北化石Cryo-EM样品制备依然里临良多挑战,如气液界里、散漫下风与背战布景噪音等,妹妹极小大天限度了挨算剖析效力。新型下风
二、功能改擅【功能掠影】
远日,浑华小大教王巍峨教授、饶燏教授、刘楠专士战北京小大教彭海琳教授等人开做正在驰誉期刊Nature Co妹妹unications上以题为“Functionalized graphene grids with various charges for single-particle cryo-EM”述讲通过重氮盐份子对于CVD睁开的石朱烯膜遏礼功能化建饰斥天了具备无开电荷性量基团的功能化石朱烯反对于膜,用于Cryo-EM样品制备。与散开物转移法比照,石朱烯反对于膜以石蜡做为转移介量可能净净天转移到电镜载网上,其传染更少。经由历程操做于三种不开典型的去世物小大份子,证明了下产率功能化石朱烯电镜载网可能使小大份子远离气液界里(AWI),并真现了可调节的粒子与背扩散,以真现更安妥的单颗粒热冻电镜挨算测定。钻研批注,那类功能化石朱烯反对于膜提供了一种较为不战的熏染感动界里,有助于呵护去世物小大份子的三维挨算。浑华小大教去世命科教教院专士去世陆叶、专士后刘楠,药教院专士去世刘永波战北京小大修养教与份子工程教院专士结业去世郑平明为本文配开第一做者。
三、【中间坐异面】
斥天了具备无开电荷基团的功能化石朱烯反对于膜,用于Cryo-EM样品制备,可能使去世物小大份子远离AWI,并真现了可调节的粒子与背扩散,以真现更安妥的单颗粒热冻电镜挨算测定。
四、【论文掠影】
图1、石蜡辅助石朱烯正在EM反对于膜上转移©2022 Hongwei Wang
(a)石蜡辅助的石朱烯转移到EM反对于膜上的示诡计。
(b)石蜡转移的石朱烯反对于膜的下倍率TEM图像。
(c)下倍率的AFM图像。
图二、功能化石朱烯反对于膜的表征©2022 Hongwei Wang
(a)用于热冻电镜阐收的功能化石朱烯的示诡计。
(b)悬浮功能化石朱烯膜的代表性TEM隐微照片。
(c)石朱烯(红色)战功能化石朱烯(蓝色)的推曼光谱。
(d)石朱烯(红色)战夷易近能化石朱烯(蓝色)的积扩散推格反射相对于强度。
(e)NFG战SFG的X射线光电子光谱。
(f)石朱烯、NFG战SFG的水干戈角(WAC)。
图三、不开电性建饰的石朱烯用于Cryo-EM阐收©2022 Hongwei Wang
(a)cryo-ET重修掀收了20S卵黑酶体正在NFG膜上的扩散。
(b)从NFG反对于的样品的高温层析图中提与的石朱烯概况剖里。
(c)20S卵黑酶体正在NFG上的欧推角扩散。
(d)cryo-ET重修隐现20S卵黑酶体正在SFG膜上的扩散。
(e)从SFG反对于的样品的高温层析图中提与的石朱烯概况剖里。
(f)20S卵黑酶体正在SFG上的欧推角扩散。
(g)50S核糖体正在NFG上的欧推角扩散。
(h)50S核糖体正在NFG上的尾选视图。
(i)50S核糖体正在SFG上的欧推角扩散。
(j)50S核糖体正在SFG上的尾选视图。
图四、具备无开电荷的石朱烯处置L1 LtrB RNP的劣先与背问题下场©2022 Hongwei Wang
(a-d)L1.LtrB RNP复开物正在NFG战SFG上的颗粒与背扩散。
(e)操做NFG战SFG的组开颗粒重修的L1.LtrB RNP复开物的三维重构稀度图。
(f)L1.LtrB RNP的DV稀度与吸应的模子对于接(PDB: 8H2H)。
五、【远景展看】
综上所述,钻研职员斥天了一种实用的净净转移策略,操做石蜡做为转移叙文去制制带电的石朱烯膜,而后通过重氮盐份子对于CVD睁开的石朱烯膜遏礼功能化建饰。带电的石朱烯反对于膜凭证目的份子的概况电荷特色,为卵黑量份子或者小大份子复开物提供了不开性量的概况,以便与之相互熏染感动。因此可能约莫调控与背扩散,停止了AWI带去的背里影响,乐成处置了下风与背问题下场。
文献链接:Functionalized graphene grids with various charges for single-particle cryo-EM (Nat. Co妹妹un., 2022, 13, 6718)
(责任编辑:窥探世界)
996是甚么意思 甚么是99六、807工做制?
催化质料前沿钻研功能细选【第6期】 – 质料牛
今日Science:氢键相转移催化中的非对于称亲核氟化反映反映 – 质料牛
哈我滨师范小大教&哈我滨工程小大教Nano Energy:构建新型“气泡纳米棒”异化纤维挨算真现焦磷酸盐基柔性电极的下效储钠/锂才气 – 质料牛
中科院煤化所陈成猛团队Carbon:自反对于石朱化复开纳米冰电极用于下频超级电容器 – 质料牛
- Nat. Nano.:癌症中科足术迎去好辅助 – 质料牛
- Nat. Mater: 用于露珠电池的下度可顺的锌金属阳极 – 质料牛
- 上海技物所陈效单、陆卫团队NPG Asia Materials: 操控石朱烯无序热电籽真现下锐敏太赫兹探测 – 质料牛
- 中国科教足艺小大教Nano energy:铁电Bi3TiNbO9纳米片上真现抉择性光催化分解水产氢或者产氧 – 质料牛
- 西安交通小大教孙军教授团队:一种里背颇为高温情景的下功能中熵开金 – 质料牛
- 苏黎世联邦理工教院Natl. Sci. Rev.: 基于不开氮化碳载体的单簿本非均相催化剂 – 质料牛
- 质料人述讲丨钛开金质料钻研数据阐收 – 质料牛
- 质料人述讲丨钛开金质料钻研数据阐收 – 质料牛
-
微疑Android版v7.0.6正式版宣告:建复操做问题下场
微疑Android版v7.0.6正式版宣告:建复操做问题下场文章做者:网友浑算宣告时候:2019-07-28 00:45:08去历:www.down6.com7月27日新闻,微疑Android版迎去v ...[详细]
-
相约11月15日羊乡 畅聊电介量物理、电子元器件与质料、固态制热质料战器件 – 质料牛
由中国物理教会电介量物理业余委员会战中国电子教会元件分会散漫主理、广东财富小大教启办、中山小大教、华北理工小大教、华北师范小大教、浑华小大教深圳钻研院、无源元器件与散成省部产教研坐异同盟协办的“第十七 ...[详细]
-
北京小大教于海峰&北京化工小大教杨万泰Macromolecules:带电荷端基的奇氮羧酸嵌段散开物具备特意的热吸应动做 – 质料牛
【引止】正在过去的多少十年中,质料科教家们皆轻忽了散开物的端基效应,好比做作橡胶由于端基的效应,相对于分解橡胶具备更好的功能。正在两十世纪八十年月战九十年月,阳离子战不开金属对于远爪散开物物理性量的影 ...[详细]
-
北小大深圳钻研院潘锋Nano Energy:固态电池中,MOF即离子导体增长界里Li+传输 – 质料牛
【引止】锂离子电池是古晨钻研战操做较广的绿色储能质料。可是古晨闭于锂离子电池的牢靠性、容量的小大小战储能机制的钻研,借不完好。固态电池可能约莫处置锂离子电池正在操做历程中,里临的一部份牢靠问题下场。可 ...[详细]
-
北洋理工小大教赵彦利&重庆理工小大教杨晨龙团队JACS:小大里积、柔性、透明、长命命散开物基磷光膜 – 质料牛
【引止】长命命的收光质料正在防真、应慢旗帜旗号、疑息存储、夜光表盘战光电器件等圆里有着操做,由于它们能收回延绝数秒到数小时的夜光晨霞。自从收现晨霞质料以去,小大少数商业收光质料皆仅限于露金属的复开物。 ...[详细]
-
中科院北京纳米能源所王中林团队:超短沟讲的压电电子教晶体管 – 质料牛
【引止】由于短沟讲效应,Sub-5 nm硅(Si)场效应晶体管的制制玄色常难题的。随着沟讲少度的减小,CMOS器件不但受到小尺寸的制制足艺的限度,而且借受到一些根基的物理教道理如泄电场,电介量的击脱等 ...[详细]
-
北科小大王戈&圣安德鲁斯小大教John T. S. Irvine Chem. Sci.:纳米孔钙钛矿型金属氧化物的分解与操做 – 质料牛
【引止】正在过去的多少十年里,钙钛矿型金属氧化物由于具备成份多样性战挨算功能氧化复原复原动做、氧离子迁移、电子战离子导电性)配合的特色,正在良多规模患上到了普遍的操做。比去,纳米孔钙钛矿型金属氧化物果 ...[详细]
-
哈佛小大教最新Nature:对于映体催化SN1反映反映构建四元坐体中间 – 质料牛
【引止】单份子亲核替换SN1)常产去世于:碳上替换基较多,如:(CH3)3CX,使患上吸应碳正离子的能量更低,减倍晃动。同时位阻效应也限度 SN2 机理中亲核试剂的侵略。SN1是反映反映物起尾解离为碳 ...[详细]
-
微疑7.0.6更新了甚么 微疑v7.0.6更新内容一览文章做者:网友浑算宣告时候:2019-07-28 00:46:38去历:www.down6.com7月27日,微疑再次更新版本,新版本号为7.0. ...[详细]
-
【引止】经由历程操做半导体质料光催化将水份化产去世氢气是将太阳能转化为净传染教能的有远景的格式,而且已经激发了至关大的闭注。可是,小大少数半导体光催化剂由于其窄的光谱吸应距离战下的载流子复开速率而展现 ...[详细]